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ABSTRACT 
 
Estimating the coverage of the seafloor by poly-metallic nodules from high-resolution 
photographs is a problem yet to be solved. Initial approaches to nodule density 
estimation have been done by sonar backscatter. This technique is capable of 
monitoring a large region but lacks a resolution sufficient to identify spots of high 
nodule density. Recently, image based monitoring has been proposed, which is able 
to display nodule density on much higher spatial resolution but introduces a 
bottleneck in data analysis since huge volumes of underwater video/image data have 
to be analyzed regarding the nodule coverage. 
To move forward in the automated underwater image evaluation regarding a spatial 
quantification of nodule coverage, a pilot study was conducted on a set of benthic 
images taken in the Pacific Ocean.  
Here we present a first prototype for a computational image analysis approach to 
quantify nodule coverage. The system first pre-processes the images to enhance 
color contrast and to reduce illumination artifacts. In a next step, a new artificial 
neural network approach is applied to map image sub-regions to coverage 
percentage values. A small subset of ten reference images is used to train the 
network and to tune the pre-processing parameters automatically. 
We report a correlation of 0.95 between the expert’s estimate and the automated 
approach for the training data and 0.99 for a small validation set. 
 
INTRODUCTION 
 
Vast regions of the Earth’s oceans are yet unexplored. Vessels from several marine 
research institutions are currently exploring myriads of topics, including unknown 
species in the deep-sea, carbon sequestration and impacts of environmental change 
on habitats. Increasing scientific attentiveness also rises in the field of marine 
resources. While fishery has been around since millennia, oil and gas rigs since 
decades and even offshore wind parks are now operating, further unexplored 
resources exist, like methane hydrates and, as discussed in the context of this work, 
poly-metallic nodules. 
Those nodules occur all around the globe, with the main, known hotspots on the 
abyssal plains in the Pacific and Indian Ocean. They lie on the sea floor and contain 
certain valuable metals like nickel, copper and manganese. It takes millions of years 
for the nodules to grow around a crystallization nucleus. Sources of the metals are 
the deep-sea sediment and the oceanic water column (Halbach et.al. 1988). 
With increasing prices for several of the metals contained in the nodules, research in 
deep-sea mining of poly-metallic nodules has become more attractive for national 
institutes and consortia of private companies in the last years. Some countries have 
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thus obtained a license to explore a given region for a fixed amount of time from the 
International Seabed Authority. Germany is currently investigating the nodule 
occurrence in a region between the Clarion and Clipperton fracture zones in the 
eastern equatorial Pacific. 
To assess the distribution of nodules, sonar backscatter has been applied on the 
whole German exploration area (Kuhn et.al. 2011). The results of this survey give an 
insight to the benthic conditions with a small resolution of 120 m per pixel. As an 
addition to this method, camera transects were captured with an Ocean Floor 
Observation System (OFOS). This technique has the advantage of a high resolution 
of about 0.5mm per Pixel, which is also its drawback since a full monitoring of the 
German exploration area would create about 800 Petabyte of data (150 million 
Gigabytes, more than five times the amount of data produced per year by the Large 
Hadron Collider). The imaging approach is thus used to take regional snapshots of 
nodule coverage to correlate the sonar backscatter data with high-resolution 
measures. 
Measuring the coverage within the captured images has not yet been automated, 
similar to other fields of underwater imaging that have shown to be difficult to assess 
without human interaction. 
 
MATERIALS AND METHODS 
 
Images 
In this study, two image transects from the eastern German license area are 
investigated, taken during an expedition with R/V Sonne in 2010 (Rühlemann et.al. 
2010). The images were taken by the video sledge of an OFOS that was towed about 
2m above the sea floor. The images have a footprint of 1.3 to 5.3 m2 depending on 
the varying OFOS height and thus show different illumination settings from being 
dark blue when the OFOS is far away, to bright yellow when it is close to the sea 
floor. The footprint was computed by detecting the three laser points emitted from the 
OFOS and evaluating their positions relative to each other automatically. 
Each image is 4224x2376 pixels in size and consists of three channels (Red, Green, 
Blue: RGB) with 8 Bit per channel. Due to strong illumination artifacts we limited the 
coverage estimation to a large central region of the images with 1688x792 pixel size 
in this initial study. Future work will aim at increasing the size of this region by 
improving the pre-processing and efforts towards stabilizing the camera-seafloor 
distance. 
To develop and evaluate our algorithmic approach we selected ten example images 
(referred to as reference images) from the transects and gave those to one expert 
who quantified the coverage manually (see Figure 6). To this end, the images were 
fed into our online underwater image database system BIIGLE (Ontrup et.al. 2009). 
The expert inspected the images via an Internet browser and selected for each sub-
region on the image a percentage value in steps of 10%. 
 
Illumination correction 
To enable an automated computational analysis of all images with the same setup 
(i.e. with one set of image processing parameters), we pre-processed the images to 
correct the varying illumination conditions. As all images feature a lightness falloff 
towards the corners, we subtracted a Gaussian filtered version of the image. The 
filter had a very large kernel of 701x701 pixels and the filtered image is thus only a 
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representation of the illumination cone. This procedure equalizes the illumination 
within one image. 
To equalize the color contrast within all images of the transects, a histogram 
equalization was applied. Thereby the peak of the color histogram of each image was 
shifted to the center of the color scale. The complete method is explained in more 
detail in Schoening et.al. (2012). 
 
Feature transformation 
From the pre-processed images, we computed a color feature representation for 
each pixel. This feature representation consists of a color histogram. To compute the 
color features for one pixel p, a 7x7 pixel neighborhood N(p) is considered. For each 
of the RGB channels, a 4 bit binning is applied, and the 3x16 bin counts are fused to 
a 48-dimensional feature vector x(p) of the pixel p. The feature vectors of a large 
number of points (for instance from all pixels of the ten reference images) constitute 
a structure in a 48-dimensional space, which can be modeled using methods from 
machine learning and artificial neural networks regarding structural features (like 
clusters) and hidden regularities (e.g. cluster-specific features such as coverage 
percentage). 
 
Machine Learning 
For this study, a Hyperbolic Self-Organizing Map (HSOM) is applied which is an 
artificial neural network algorithm for data clustering and dimensionality reduction 
(Ontrup and Ritter  2001). 
We randomly picked 20% of the feature vectors of five of the ten reference images 
for the training of the HSOM (which resembles less than 0.05% of all available data). 
The trained HSOM learned 161 clusters from this data, represented by prototypes 
u(m), (m = 0,..,160) applying an Euclidean metric to compute distances in the feature 
space. 
The trained HSOM was then used to identify the best-matching units of all other 
feature vectors from all images. This way each pixel p is assigned to one integer m 
by first mapping the pixel p to its feature vector x(p) and mapping this feature vector 
to its best matching (i.e. most similar) cluster m with its prototype u(m). In a next 
step, the cluster indices m of all pixels in one grid cell Cj (j = 1,…,G; G: amount of 
grid cells in one image) are fused to one new feature vector v(Cj), representing the 
prototype distribution within a grid cell. In other words, the HSOM clustering 
quantized 48-dimensional color features and projects them to a one-dimensional 
index, which is used to compute a new 161-bin histogram for this new index. Figure 1 
shows two cells and their corresponding histograms. 
As the HSOM features a hyperbolic geometry, its prototypes can be mapped onto the 
maximum-illumination disc of the Hue-Saturation-Value (HSV) color space. Thus 
each prototype is assigned a distinct color. Replacing each pixel’s color values with 
the HSV color of its best-matching unit, the image can be transformed into a pseudo-
color image that visualizes the clustering outcome. 
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Figure 1: Two cells with different coverage and nodules of different size. Next to 
them are the histograms of the prototypes occurring within the cell. This histogram is 
a bag-of-prototypes and serves as a representation of the cell for further processing.  
 
To map the grid cells feature vectors v(Cj) to a coverage percentage value, a 
Principal Component Analysis (PCA) is conducted with the covariance matrix of all 
cells {v(Cj)}. The feature vectors are projected onto the first two principal 
components, reducing their dimensionality to 2. 
Visualizing the resulting tuples of all cells in a scatterplot shows a continuous 
distribution of cells along an axis of increasing nodule coverage. This allows the 
relative classification of a cell according to cells with similar coverage. 
 
Quantification 
For a quantification of a cell’s coverage, a manual annotation of some cells is 
necessary. As mentioned above, an expert of the field thus manually evaluated 80 
cells, taken from the reference images using the BIIGLE system, assigning a 
coverage estimate of i x 10% to each cell (i in [0..10]). 
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Figure 2: Only a small set of images has to be manually annotated for a qualitative 
coverage estimate (here: 10 images out of 2100). This can be done with the Grid 
annotation tool of BIIGLE in 1 to 5 minutes per image. 
 
Image cells, which have not been quantified manually, i.e., the coverage of which is 
unknown, are processed accordingly. First, the prototype frequencies are counted to 
compute v(Cj), which is projected onto the first two principal components. The 
projection result is assigned to that i x 10% value of the closest annotated cell. This 
approach is also referred to as case-based reasoning. 
 
RESULTS 
 
The original images featured a wide variety of color spectra. One example is shown 
in Figure 3. The pre-processed images show increased brightness in the corners, 
more obvious laser points and higher color contrast between nodules and sediment 
as shown in Figure 4. Figure 5 shows the HSV pseudo color image of the clustering 
result. 
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Figure 3: An example of a seafloor image with poly-metallic nodules. Shown is the 
center region of an image as it is used for further processing. 
 

 
Figure 4: Pre-processed version of the image in Figure x. The nodules appear 
darker; the sediment was shifted towards higher values of red, making it appear 
brown/ochre. Also, the laser points are easier to perceive. 
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Figure 5: The clustering outcome of the HSOM as a pseudo color image. The input 
image was the one shown in Figure 3. Each pixel is colored according to the position 
of its best-matching unit on the HSV disc. The nodules appear primarily in green, the 
background (i.e. sediment and shadow of the OFOS pilot weight) appear in red, 
purple, blue and turquoise. 
 
Figure 6 shows two sample annotations. Two benthic images are shown together 
with an overlay of the expert’s coverage estimate. The coverage is encoded by gray 
value, with the lowest coverage shown in black and the highest coverage shown in 
white. 
  

Figure 6: Two benthic images with different coverage and nodules of different shape 
and size are shown on the left. On the right are the same images with an overlay of 
the human experts coverage estimate. In the upper image, the coverage ranges from 
20% (upper left cell) to 40% (right half of the image). In the lower image, the 
coverage ranges from 10% (two left-most cells) to 30% (lower row, second from left 
tile) 
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Figure 7 shows a scatterplot of the tuples of all cells, aligned by their increasing 
coverage along the x-axis. This axis depicts the second most important principal 
component. 
 

 
Figure 7: Scatterplot of all hand labeled cells. The colors encode the experts 
coverage estimate and are as follows: red 0%, green 10%, blue 20%, yellow 30%, 
purple 40%, turquoise 50%. The cells are aligned primarily along the x-axis. This axis 
represents the second most important principal component. 
 
Re-evaluation of the training data showed a correlation of 0.96 between the human 
expert annotation and the bag-of-prototypes estimate. Figure 8 shows the amount of 
cells in each i x 10% group for the expert as well as the automated estimate. There 
were no groups with a coverage of more than 50%, neither for the human expert nor 
for the automated results.  
 

 
Figure 8: Histogram of the amount of cells of varying coverage for the training cells. 
The gray bars show the human experts estimate, the red bars show the automated 
estimate. 
 
To validate the process, the coverage of 24 further cells was estimated with the bag-
of-prototypes approach. Those cells have not been used for the training of the HSOM 
or the PCA and were also hand annotated by a human expert. The correlation 
between the human and machine estimates for the validation cells was 0.99. There 
were no cells with a coverage higher than 30%. The according group distribution is 
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shown in Figure 9, the scatterplot of the tuples, computed by the existing PCA, is 
shown in Figure 10.  
 

 
Figure 9: Histogram of the amount of cells of varying coverage for the validation 
cells. The gray bars show the human experts estimate, the red bars show the 
automated estimate. 
 

 
Figure 10: Scatterplot of all hand labeled training cells (small boxes) together with 
the validation cells (large boxes). The colors and axes are as in Figure 5. 
 
Computation time 
The pre-processing of an image takes about 3 minutes, since the computation of the 
Gaussian filtered image is time-consuming. The feature extraction takes less than 
one minute and expands the data per image from about 4.5MB to about 60MB. The 
training of the HSOM takes about 1 hour, but has to be done only once, as well as 
the PCA that takes less than a minute. The bagging of prototypes takes less than a 
minute per image. When a new image is recorded, the coverage estimate is 
computed within 3 to 5 minutes. All measures are averages for the execution times 
on a single-core machine. 
 
DISCUSSION 
 
This pilot study has shown, that the proposed approach of neural network-based 
classification of grid cell feature compositions is capable to qualitatively estimate the 
nodule coverage of a benthic image in steps of i x 10%. Nevertheless, the data basis 
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is still sparse, as only images from one region were evaluated. Also, the amount of 
validation cells is still too low to make a more significant estimate of the system 
performance on data from numerous large OFOS explorations. For a larger validation 
dataset, further expert annotations are required which are currently created for a 
follow up study. 
The approach is currently dependent on the expert annotations by means of the 
case-based reasoning. A model of the point distribution of tuples within the PCA 
projection scatterplot could be used to derive a tessellation of the 2D plane for a 
more stable assignation of unseen cells to their coverage group. Also, a qualitative 
measure could be introduced according to the x-value of the tuple by which a 
continuous coverage value would be assigned to a cell instead of a coverage group. 
This would require more detailed expert annotations and could thus not yet be 
developed as the gold standard to test for is missing. 
During the correlation of the human and machine results arose the problem of how 
trustworthy the expert results are. Within the scatterplot of the training data (Figure 
5), the clusters of coverage groups overlap and visual inspection of those cells, lying 
considerably within a cluster dissimilar to their own type suggests, that they might 
have been erroneously annotated. The annotation by one or more further experts 
could give more detailed information about this issue. 
In principal, the complete approach could be performed by the OFOS itself. 
Therefore, the first issue would be to speed-up the time-consuming Gaussian filtering 
of the illumination correction step considerably, e.g. by a hardware solution. This 
would allow the estimation of the nodule coverage without recording as much data as 
required for a digital image. An autonomous submersible could be launched, 
programmed to monitor a vast region of seafloor independently, recording only the 
nodule coverage. Thus the drawback of the high resolution would become an 
advantage. 
 
CONCLUSION 
 
We presented our initial efforts in quantifying the coverage of the deep seafloor with 
poly-metallic nodules. A pre-processing of the initial data has been proposed 
together with an unsupervised machine-learning procedure to gather a numeric 
estimate of the coverage. 
The bagging of prototypes is a novel approach in data mining that allows the purely 
data-driven classification of sub-regions within images. 
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